Name: Katrina Desiree Jaafar
NPM: 15614800
Class: 4SA01
Original
Article
Tembok
Canggih Mampu Produksi Listrik
Selama ini panel surya
cuma bisa ditempatkan di atap rumah buat mendapat sinar matahari secara
optimal. Tapi kini ilmuwan di Jerman mengembangkan tembok yang bisa memproduksi
listrik dari energi matahari. Sejak lebih dari 3
miliar tahun, dengan bantuan pigmen warna klorifil, tanaman berdaun hijau
mengubah cahaya melalui fotosintesa menjadi energi kimia. Inilah basis bagi
kehidupan di bumi. Yakni, produksi energi yang bebas polusi.
Di Universitas Kassel,
para ilmuwan meniru proses produksi energi tersebut. Tim arsitek, seniman,
ilmuwan teknologi nano dan desainer mengembangkan bahan bangunan yang berfungsi
sebagai sel fotovoltaik dan mengubah energi matahari menjadi listrik. Pertama-tama mereka
membuat beton yang bersifat konduktor. Para peneliti menambahkanan grafit agar
beton memiliki kemampuan menghantar listrik. Beton yang sudah kering dapat
dipakai sebagai kutub positif atau negatif dan menghantarkan elektron.
Oleh karenanya, arsitek
Thorsten Klooster dan seniman Heike Klussmann memiliki ide memanfaatkan beton
ini untuk menghasilkan listrik tenaga surya. Klussmann menjelaskan: “Yang
istimewa, sensitivitas terhadap sentuhan. Sensitivitas sentuhan ini muncul
setelah kita membuat beton bersifat konduktif. Dan beton konduktif ini menjadi
elemen dasar beton tenaga surya.“ Untuk mengaktifkan
beton agar bisa memproduksi energi, peneliti mencetak atau menyemprotkan
beberapa lapisan cat pada beton. Hasilnya adalah apa yang disebut sel surya
pigmen warna, yang menghasilkan listrik energi surya berbasis fotosintesa.
Faktor yang menentukan adalah urutan pelapisan cat amat tipis itu.
Thorsten Klooster:
“Jika kita mengkombinasikan dengan tepat lapisan warna, terciptalah efek sel
fotovoltaik. Dalam sistem ini, ada lapisan dimana terdapat pigmen klorofil. Dan
ketika sinar matahari mengenai pigmen warna ini, elektron dilepaskan dan arus
listrik mengalir.“ Guna mengoptimalkan
kinerja sel surya berbasis pigmen warna, pengukuran dilakukan dalam jangka
panjang di laboratorium. Sebuah lempengan sel surya hanya membangkitkan
tegangan beberapa ratus milivolt. Ilmuwan menunjukkan jika cahaya yang jatuh ke
sel surya ditutupi tangan, tegangan turun drastis. Tegangan kembali meningkat
ketika cahaya menyinari lagi sel surya.
Efisiensi sel surya saat
ini hanya dua persen. Sepertinya kecil, tapi tetap berguna. Klussman: “Beton
sel surya buatan kami sangat menarik, karena mudah diproduksi dan ramah
lingkungan, serta dapat diterapkan pada bidang yang luas. Kita dapat
membayangkan perspektifnya, semua permukaan datar di sebuah kota bisa
menghasilkan listrik.“ Semakin banyak sel
surya yang disemprotkan atau dicetak pada dinding rumah, lebih banyak listrik
yang dapat diproduksi. Untuk itu sel-sel surya harus terkoneksi dan dijadikan
panel. Dalam kondisi ideal setiap meter persegi permukaan bisa menghasilkan 20
watt listrik.
Klooster: “Sel tunggal
tidak dapat memproduksi listrik, sel-sel harus dikoneksikan dan dibuat modul.
Beberapa sel membentuk sebuah panel. Ini contohnya, sebuah modul dengan enam
sel. Sel-sel ini terhubung dengan kabel. Baik terhubung secara seri maupun
paralel. Lewat kabel ini, konsumen bisa menghubungkan peralatan, misalnya
menyalakan bohlam. Pada beton,
interkoneksitas di antara sel-sel surya itu tersembunyi dalam lapisan cat. Visi
peneliti, dalam waktu sekitar 5 tahun sel surya pigmen warna bisa diproduksi
massal secara industrial. Baik sebagai bahan bangunan untuk bangunan baru
maupun ditambahkan pada fasad yang sudah ada.
URL:
http://www.dw.com/id/tembok-canggih-mampu-produksi-listrik/a-19369030
Google
translate version
Sophisticated
Wall Able to Produce Electricity
During this solar panel
can only be placed on the roof of the house to get sunlight optimally. But now
scientists in Germany are developing a wall that can produce electricity from
solar energy. Since more than 3
billion years, with the help of chlorophyll color pigments, green leafy plants
convert light through photosynthesis into chemical energy. This is the basis
for life on earth. Namely, pollution-free energy production.
At the University of
Kassel, scientists imitate the energy production process. The team of
architects, artists, nanotechnology scientists and designers develops building
materials that serve as photovoltaic cells and convert solar energy into
electricity. First they make
concrete that is conductor. The researchers added graphite in order for the
concrete to have electric conductivity. The dried concrete can be used as a
positive or negative pole and deliver electrons.
Therefore, architect
Thorsten Klooster and artist Heike Klussmann have the idea of utilizing this
concrete to produce solar electricity. Klussmann explains: "What is
special, the sensitivity to touch. This touch sensitivity comes after we make
concrete conductive. And this conductive concrete is the basic element of solar
energy concrete." To enable the concrete
to produce energy, researchers print or spray some layers of paint on the
concrete. The result is the so-called color solar pigment cells, which generate
solar energy based photosynthesis. The decisive factor is the very thin paint
coating sequence.
Thorsten Klooster:
"If we combine precisely the layers of color, we create the effects of
photovoltaic cells. In this system, there is a layer where there is chlorophyll
pigment. And when the sun is on these color pigments, the electrons are
released and the electric current flows." In order to optimize
the performance of color-based solar pigment cells, measurements are made over
the long term in the laboratory. A slab of solar cells generates only a few
hundred millivolts. Scientists point out if the light that falls into the solar
cells is covered in hands, the voltage drops drastically. The voltage again
increases when the light shines again the solar cells.
The efficiency of
today's solar cells is only two percent. It seems small, but still useful.
Klussman: "Our solar cell concrete is very attractive, because it is easy
to produce and environmentally friendly, and can be applied to a wide field. We
can imagine his perspective, all the flat surfaces in a city can generate electricity." The more solar cells
that are sprayed or printed on the walls of the house, more electricity can be
produced. For that solar cells must be connected and made panels. Under ideal
conditions every square meter surface can produce 20 watts of electricity.
Klooster: "Single
cells can not produce electricity, cells must be connected and modules are
made. Some cells form a panel. This is, for example, a module with six cells.
These cells are connected with cables. Both connected in series or parallel. Through
this cable, consumers can connect the equipment, such as turning on a bulb. In concrete, the
interconnectivity between the solar cells is hidden in a layer of paint. Vision
researchers, within about 5 years of color pigment solar cells can be mass
produced industrially. Both as a building material for new buildings and added
to the existing facade.
Revised
version
A
Wall That Can Produce Electricity
All this time solar
panel can only be placed on the roof of the house in order to get optimal sunlight.
But now scientists in Germany are developing a wall that can produce
electricity from solar energy. Since more than 3
billion years, with the help of chlorophyll color pigments, green leafy plants can convert light through photosynthesis into chemical energy. This is the basis
for life on earth. Namely a pollution-free energy production.
At the University of
Kassel, scientists imitate the energy production process. The team of
architects, artists, nanotechnology scientists and designers develops materials
that serves as photo-voltaic cells and convert solar energy into electricity. First, they make
concrete that functions as a conductor. The researchers then added graphite in order
for the concrete to have electric conductivity. The dried concrete can be used
as a positive or negative pole and deliver electrons.
Therefore, architect
Thorsten Klooster and artist Heike Klussmann have the idea of utilizing this
concrete to produce solar energy. Klussmann explains: "What is special is the
sensitivity to touch. This touch sensitivity comes after we make the conductive
concrete. And this conductive concrete is the basic element of solar energy
concrete." To enable the concrete
to produce energy, researchers print or spray some layers of paint on the
concrete. The result is the so-called solar color pigment cells, which generate
solar energy from photosynthesis. The decisive factor is the very thin paint
coating sequence.
Thorsten Klooster:
"If we combine precisely the layers of color, we create the effects of
photo-voltaic cells. In this system, there is a layer where there is chlorophyll
pigment. And when the sun hits these color pigments, the electrons are
released and the electric current flows." In order to optimize
the performance of color-based solar pigment cells, long term measurements are
made in the laboratory. A slab of solar cells generates only a few hundred
millivolts. Scientists point out if the light that hits the solar cells
is covered by hands, the voltage drops drastically. The voltage recurrently increases
when the light hits the solar cells again.
The efficiency of
today's solar cells is only at two percent. It seems small, but still useful.
Klussman said, "Our solar cell concrete is very fascinating, because it is
easy to produce and environmentally friendly, and can be applied in a wider
field. We can imagine the prospect of having all the flat surfaces in a city
generating electricity." The more solar cells
that are sprayed or printed on the walls of the house, the more electricity can
be produced. For that solar cells must be connected and made into panels. Under
ideal conditions every square meter of surface can produce 20 watts of
electricity.
Klooster: "Single
cells cannot produce electricity, cells must be connected and modules must be
made. Some cells form a panel for example, a module with six cells. These cells
are connected with cables. Both connected in series or parallel. Through this
cable, consumers can connect the equipment, such as turning on a light bulb. In concrete, the
inter-connectivity between the solar cells is hidden in a layer of paint. Researchers
envisioned that within about 5 years of color pigment solar cells can be industrially
mass produced both as a building material for new buildings, or as an addition
to the existing facade.