Saturday, April 14, 2018

Tugas 2 Penerjemahan Berbantuan Komputer


Name: Katrina Desiree Jaafar
NPM: 15614800
Class: 4SA01

Original Article
Tembok Canggih Mampu Produksi Listrik

Selama ini panel surya cuma bisa ditempatkan di atap rumah buat mendapat sinar matahari secara optimal. Tapi kini ilmuwan di Jerman mengembangkan tembok yang bisa memproduksi listrik dari energi matahari. Sejak lebih dari 3 miliar tahun, dengan bantuan pigmen warna klorifil, tanaman berdaun hijau mengubah cahaya melalui fotosintesa menjadi energi kimia. Inilah basis bagi kehidupan di bumi. Yakni, produksi energi yang bebas polusi.

Di Universitas Kassel, para ilmuwan meniru proses produksi energi tersebut. Tim arsitek, seniman, ilmuwan teknologi nano dan desainer mengembangkan bahan bangunan yang berfungsi sebagai sel fotovoltaik dan mengubah energi matahari menjadi listrik. Pertama-tama mereka membuat beton yang bersifat konduktor. Para peneliti menambahkanan grafit agar beton memiliki kemampuan menghantar listrik. Beton yang sudah kering dapat dipakai sebagai kutub positif atau negatif dan menghantarkan elektron.

Oleh karenanya, arsitek Thorsten Klooster dan seniman Heike Klussmann memiliki ide memanfaatkan beton ini untuk menghasilkan listrik tenaga surya. Klussmann menjelaskan: “Yang istimewa, sensitivitas terhadap sentuhan. Sensitivitas sentuhan ini muncul setelah kita membuat beton bersifat konduktif. Dan beton konduktif ini menjadi elemen dasar beton tenaga surya.“ Untuk mengaktifkan beton agar bisa memproduksi energi, peneliti mencetak atau menyemprotkan beberapa lapisan cat pada beton. Hasilnya adalah apa yang disebut sel surya pigmen warna, yang menghasilkan listrik energi surya berbasis fotosintesa. Faktor yang menentukan adalah urutan pelapisan cat amat tipis itu.

Thorsten Klooster: “Jika kita mengkombinasikan dengan tepat lapisan warna, terciptalah efek sel fotovoltaik. Dalam sistem ini, ada lapisan dimana terdapat pigmen klorofil. Dan ketika sinar matahari mengenai pigmen warna ini, elektron dilepaskan dan arus listrik mengalir.“ Guna mengoptimalkan kinerja sel surya berbasis pigmen warna, pengukuran dilakukan dalam jangka panjang di laboratorium. Sebuah lempengan sel surya hanya membangkitkan tegangan beberapa ratus milivolt. Ilmuwan menunjukkan jika cahaya yang jatuh ke sel surya ditutupi tangan, tegangan turun drastis. Tegangan kembali meningkat ketika cahaya menyinari lagi sel surya.

Efisiensi sel surya saat ini hanya dua persen. Sepertinya kecil, tapi tetap berguna. Klussman: “Beton sel surya buatan kami sangat menarik, karena mudah diproduksi dan ramah lingkungan, serta dapat diterapkan pada bidang yang luas. Kita dapat membayangkan perspektifnya, semua permukaan datar di sebuah kota bisa menghasilkan listrik.“ Semakin banyak sel surya yang disemprotkan atau dicetak pada dinding rumah, lebih banyak listrik yang dapat diproduksi. Untuk itu sel-sel surya harus terkoneksi dan dijadikan panel. Dalam kondisi ideal setiap meter persegi permukaan bisa menghasilkan 20 watt listrik.

Klooster: “Sel tunggal tidak dapat memproduksi listrik, sel-sel harus dikoneksikan dan dibuat modul. Beberapa sel membentuk sebuah panel. Ini contohnya, sebuah modul dengan enam sel. Sel-sel ini terhubung dengan kabel. Baik terhubung secara seri maupun paralel. Lewat kabel ini, konsumen bisa menghubungkan peralatan, misalnya menyalakan bohlam. Pada beton, interkoneksitas di antara sel-sel surya itu tersembunyi dalam lapisan cat. Visi peneliti, dalam waktu sekitar 5 tahun sel surya pigmen warna bisa diproduksi massal secara industrial. Baik sebagai bahan bangunan untuk bangunan baru maupun ditambahkan pada fasad yang sudah ada.

URL: http://www.dw.com/id/tembok-canggih-mampu-produksi-listrik/a-19369030


Google translate version

Sophisticated Wall Able to Produce Electricity

During this solar panel can only be placed on the roof of the house to get sunlight optimally. But now scientists in Germany are developing a wall that can produce electricity from solar energy. Since more than 3 billion years, with the help of chlorophyll color pigments, green leafy plants convert light through photosynthesis into chemical energy. This is the basis for life on earth. Namely, pollution-free energy production.

At the University of Kassel, scientists imitate the energy production process. The team of architects, artists, nanotechnology scientists and designers develops building materials that serve as photovoltaic cells and convert solar energy into electricity. First they make concrete that is conductor. The researchers added graphite in order for the concrete to have electric conductivity. The dried concrete can be used as a positive or negative pole and deliver electrons.

Therefore, architect Thorsten Klooster and artist Heike Klussmann have the idea of ​​utilizing this concrete to produce solar electricity. Klussmann explains: "What is special, the sensitivity to touch. This touch sensitivity comes after we make concrete conductive. And this conductive concrete is the basic element of solar energy concrete." To enable the concrete to produce energy, researchers print or spray some layers of paint on the concrete. The result is the so-called color solar pigment cells, which generate solar energy based photosynthesis. The decisive factor is the very thin paint coating sequence.

Thorsten Klooster: "If we combine precisely the layers of color, we create the effects of photovoltaic cells. In this system, there is a layer where there is chlorophyll pigment. And when the sun is on these color pigments, the electrons are released and the electric current flows." In order to optimize the performance of color-based solar pigment cells, measurements are made over the long term in the laboratory. A slab of solar cells generates only a few hundred millivolts. Scientists point out if the light that falls into the solar cells is covered in hands, the voltage drops drastically. The voltage again increases when the light shines again the solar cells.

The efficiency of today's solar cells is only two percent. It seems small, but still useful. Klussman: "Our solar cell concrete is very attractive, because it is easy to produce and environmentally friendly, and can be applied to a wide field. We can imagine his perspective, all the flat surfaces in a city can generate electricity." The more solar cells that are sprayed or printed on the walls of the house, more electricity can be produced. For that solar cells must be connected and made panels. Under ideal conditions every square meter surface can produce 20 watts of electricity.

Klooster: "Single cells can not produce electricity, cells must be connected and modules are made. Some cells form a panel. This is, for example, a module with six cells. These cells are connected with cables. Both connected in series or parallel. Through this cable, consumers can connect the equipment, such as turning on a bulb. In concrete, the interconnectivity between the solar cells is hidden in a layer of paint. Vision researchers, within about 5 years of color pigment solar cells can be mass produced industrially. Both as a building material for new buildings and added to the existing facade.

Revised version

A Wall That Can Produce Electricity

All this time solar panel can only be placed on the roof of the house in order to get optimal sunlight. But now scientists in Germany are developing a wall that can produce electricity from solar energy. Since more than 3 billion years, with the help of chlorophyll color pigments, green leafy plants can convert light through photosynthesis into chemical energy. This is the basis for life on earth. Namely a pollution-free energy production.

At the University of Kassel, scientists imitate the energy production process. The team of architects, artists, nanotechnology scientists and designers develops materials that serves as photo-voltaic cells and convert solar energy into electricity. First, they make concrete that functions as a conductor. The researchers then added graphite in order for the concrete to have electric conductivity. The dried concrete can be used as a positive or negative pole and deliver electrons.

Therefore, architect Thorsten Klooster and artist Heike Klussmann have the idea of utilizing this concrete to produce solar energy. Klussmann explains: "What is special is the sensitivity to touch. This touch sensitivity comes after we make the conductive concrete. And this conductive concrete is the basic element of solar energy concrete." To enable the concrete to produce energy, researchers print or spray some layers of paint on the concrete. The result is the so-called solar color pigment cells, which generate solar energy from photosynthesis. The decisive factor is the very thin paint coating sequence.

Thorsten Klooster: "If we combine precisely the layers of color, we create the effects of photo-voltaic cells. In this system, there is a layer where there is chlorophyll pigment. And when the sun hits these color pigments, the electrons are released and the electric current flows." In order to optimize the performance of color-based solar pigment cells, long term measurements are made in the laboratory. A slab of solar cells generates only a few hundred millivolts. Scientists point out if the light that hits the solar cells is covered by hands, the voltage drops drastically. The voltage recurrently increases when the light hits the solar cells again.

The efficiency of today's solar cells is only at two percent. It seems small, but still useful. Klussman said, "Our solar cell concrete is very fascinating, because it is easy to produce and environmentally friendly, and can be applied in a wider field. We can imagine the prospect of having all the flat surfaces in a city generating electricity." The more solar cells that are sprayed or printed on the walls of the house, the more electricity can be produced. For that solar cells must be connected and made into panels. Under ideal conditions every square meter of surface can produce 20 watts of electricity.


Klooster: "Single cells cannot produce electricity, cells must be connected and modules must be made. Some cells form a panel for example, a module with six cells. These cells are connected with cables. Both connected in series or parallel. Through this cable, consumers can connect the equipment, such as turning on a light bulb. In concrete, the inter-connectivity between the solar cells is hidden in a layer of paint. Researchers envisioned that within about 5 years of color pigment solar cells can be industrially mass produced both as a building material for new buildings, or as an addition to the existing facade.